Practice Problems (200 points total)

Pepe Olea and Nathaniel Mark

May 6, 2019

1 Very Short Answer Questions (15 Points - 5

each)

In these questions, please write a 1-2 sentence answer to the prompt or check

the correct box.

Question 1.1 What is the difference between a parametric model and
a non-parametric model? Be precise.

Question 1.2 Say that p > p What is largest?

O In(SSR(p)/T)

O In(SSR(p)/T)

0 BIC(p)

[0 Not enough information to tell.

Question 1.3 Assume we are in a regression framework and I write
”Define Qg5 as the 95th quantile of the distribution of B\Q. Our parametric
bootstrap estimate of Qg5 converges to Qg5 as L — oo and N — 00.”

If N is the sample size, what is L7



2 Short Answer Questions (62.5 Points - 12.5 each)

In these questions, please write a 3 - 6 sentence answer to the prompt or

follow its directions.

Question 2.1 What is the primary purpose of the parametric bootstrap

procedure? When would we use it?

Question 2.2 Take the "Dumb Information Criterion” (DIC):

SSR(p)

DIC(p) = In( T

) +In(p)

prove that p = argmin, DIC(p) is not consistent.

Hint: An estimator, p, is inconsistent if P(p = px) converges to 0 for any
set of data generating process in our model. This is because the definition
of convergence states that p is consistent if P(p = px) converges to 1 for all
true parameters (data generating processes) in the model.

Question 2.3 Take the model

Xi=p+e¢

¢ ~ N(0,1)ii.d.

with parameter p € R and loss function

L(a,p) = (a — p)?

You observe a dataset {X1, ..., X;;} Answer the following questions:

a) Is the decision rule d!(z) = % Y Xi— % an admissible decision rule? Why
or why not?

b) Is the decision rule d?(z) = 12 an admissible decision rule? Why or why
not?

c) Is the decision rule d®(x) = Random({X1, ..., X;,}) an admissible decision

rule? Why or why not?



Random({ Xy, ..., X,}) is defined as a function that takes a random value
(with uniform probabilities) from the dataset and defines that value as the
action.

Question 2.4 If the posterior distribution of p given x in a bayesian

framework is ) )
o n - 0o

N( )

m +
o2 +4n o24n" "o?+n

a) What do you think m is likely to be?

b) What is the Bayesian estimator of y if the loss function is
L(a.p) = (a — p)*?

¢) What is the Bayesian estimator of y if the loss function is
L(a, p) = (a — p)* — 367
where 6 is a constant.

Question 2.5 Take the AR(p) model

Xi=0Xi1+ €

€ ~ N(0,0?)

Define Z; = X;_1¢;.
Show that E[Z;Z;_1] =0

Long Answer Questions
In these problems,
1. Fill in the blanks.

2. Justify your answers in a separate sheet (imagine you have blue books).

Please read each of the questions very carefully and provide clean concise

answers.



NoTE: If for some reason filling in the blanks seems to confusing for you,

just write your own answer in a separate piece of paper.

3 Maximum Likelihood Estimation of 0 (25 Points)
In class we derived the Likelihood Function of the Gaussian AR(1) model:
ye=oy-1+e, a~N00%, iid. (1)
Define the Yj-conditional likelihood of (Ya,...,Yr) as:
F(¥2,... Yr[Y1:0,0%) (2)

Subquestion 1 (12.5 points) Write down the Y] - conditional Likelihood
Function for the Gaussian AR(1) model.

Answer: Using the definition of conditional density we have for any ¢ > 2:

f(a,. YilYie,o?) = (31) £ | 10.0%) [f (Y2, Vi Vi3 0,0%).

This implies that (after substituting recursively) we can write (2) as:

utfon 7| 0.7

We also know that in the AR(1) model: Y;|Y7,Ys,..., Y1 ~ 33)]\/( , ) .

Therefore, using the definition of the normal p.d.f.:

f(Ya,...,Yr|Y1;0,0%) = ! 7= exp (3.5) )

)




Subquestion 2 (12.5 points) Define the Conditional Maximum Likeli-
hood (CML) estimator of (¢, 0?) as the value that maximizes the likelihood

associated to (2). We have already shown that:

T T
oML = doLs = zYth—l/Z Y2
t=2 t=2

3)

Derive the conditional maximum likelihood estimator of o2 for the AR(1)

model (HINT: Take the derivative of the conditional log-likelihood function

with respect to o and set it equal to zero). How does this estimator com-

pare to the OLS estimator for the variance?

Answer: The conditional log-likelihood function In f(Y5, ..

equals:

-1 In(27)

The first-order conditions with respect to o2 give:

LYY ¢,07)

- (3.6)

(3.7)

)

We have already shown that qASCML is given by (3). Therefore, 52, should

satisfy:

T-1 1

~2
2 ot

+

(3.8)

This implies that:

2 1
CML =

(3.9)

~2
OOLS-




4 Parametric Bootstrap (32.5 points)

Let $0ML and G2, denote the values of ¢ and o? that maximize the con-
ditional maximum likelihood in (2). In this question I want you to use the
parametric bootstrap to approximate the distribution of these estimators.

We will do this in two steps.

Subquestion 1 (12.5 points): Write a python function called aridraws
that takes as inputs the values of (¢, o, Y1, T, I) with output equal to I draws
of the time series data:

(Yo, Ys,...,Y7)

distributed according to f(Ya, ..., Yr|Y1;¢,02). The output should be a ma-

trix of dimension I x T with each row containing a draw from (Y7, Ys, ..., Y7).

Answer: One possible solution is as follows:
import numpy as np

def arldraws(phi, sigmasq, Yinit = 0, T, I):

e = (4.1) ) % I times T draws from N(O, sigmasq)
Y = np.zeros([I, T1); %Initialize the values of Y
Y[:, 0] = <4.2) > ; % Initial Condition

for t in range(l, T):

4.3) | = phi * [4.4) + el:,t]

return Y;



Subquestion 2 (12.5 points): Suppose that you have a function that
computes ¢oy, and G2y, Let this function be called CML and suppose

that it takes as input a given data set:
Yy = [Yl,...,YT]

To be more specific, assume that that the syntax of the function is of the
form:
phiCMLd, sigma2CML = CML(y)

Write a python function ParamBootsAR1 that takes as inputs (&;ML, oML, Y1,T)
and generates B bootstrap draws of ¢A>CML and oM.

Answer: One possible solution is as follows:

def ParamBootsAR(phihat, sigmasghat, Y1 = 0, To, B):

Y = arldraws(|4.5)
2.7) )

4.6) , Yinit = Y1, T

3

phis = np.zeros([B, 1])

sigma2s = np.zeros([B, 1])

for b in range(B):

phi, sigma = CML(Y[b,:])

phis[b] = phi

sigma2s([b] = sigma

return phis, sigma2s;



Subquestion 3 (7.5 points):
Explain how you would calculate a 95% confidence interval for ngML
using the output of the ParamBootsAR function in 3 - 6 sentences.

5 Bayesian Model Selection (15 points)
In this question, consider the case where we have assumed a statistical model
X, =¢

€~ N(p,1)

There are two possible model types:
My :p=0

M :pe0,2]

and prior over parameters and model types:
m(p, M) = m(p|M)m(M)

m(M) = .5 for all M
7w (p|Mz) = .5 for all u between 0 and 2

That is, the prior is uniformly distributed from 0 to 2.

The posterior odds of the two models M; and My is defined as

Posterior Odds = M
m(Mz|z)

In the next three subquestions, we derive the posterior odds.

Subquestion 1 (Fill-in the blank)



We know that the posterior probability of model M is given by:

f(x[M)5.1)
J*(x)

where f(z|M) can be derived from integrating a function of our statistical

m(M|z) =

model and priors. That is,

fn) = [[52) i
Subquestion 2 (Proof)
Prove that )
. |y
Posterior Odds = &———=
f(x|M2)

Subquestion 2 (Fill-in the blank)
In this section, we derive f(x|My) and f(x|Ms)

For model one:

fz|My) = H¢<Xi>

where ¢(x) is the pdf of the standard normal distribution. For model two:

flalt) = [[53) au

where ¢(x) is the pdf of the standard normal distribution.

6 Model Selection for AR(p) models (25 points)

Consider the function

T p
_ 1 ~ n 2 2
AIC(p) =In Tt:;—l(yt _N_j;(/)jyt—j) +(p+1)f

The number of lags selected by the Akaike Information Criterion, p, mini-
mize AIC(p) for values p € {0,1,2...p}. Take 0 < p* < p. We can show



(using the same arguments we used in lecture) that:

lim P, (p < p*) = 0.

T—o00

Taking equation (4) as given, is it true that:

lim P,(p > p*) > 07
Jim Py (p>p7) > 0

(HINT: Use the fact that for any ¢ > 0, 0 < limg_, o Pp(Wald(p*) < ¢) < 1.)
Answer: Suppose not. Then limp_,o, Pp+(p > p*) = 0. Since

Pp(p < p*) +

then we should have:

lim P (

T—o00

<4.1>

Take any p > p*. Note that:

p=p")=[42)

Py(p=p") = Pp( (43)

IN

Py« (AIC(p*)

4.4)

(since P(AN B) < P(A))

Q

Which implies that

(Wald(p™) < 2(p —p"),

|4.5) = lim P,(p=p*) < lim

T—o0

10

T T—oo

for all p € {0,1

ATC(p))

77ﬁ}7p?ép*)

P, (In(1 + (SSR(p") — SSR(5)) /SSR(p)) < 205 — p°)/T)
— Py (In(1 + Wald(p")/T) < 2(5 — p*)/T)
P,

(using a Taylor expansion))

(4.6)




Since 2(p — p*) > 0, then:

1< lim
T—o00

A contradiction.

(4.7)

<4.8>

11




7 Bayesian Decision Making (25 points)

How would you set the problem of forecasting y; 1 as a Bayesian Decision
Problem un quadratic loss? What is the the forecast that a Bayesian would

use?

Answer: To set-up the problem we need to think about what is the data,
what is the statistical model that we are working with, what is the parameter

space, what is the action space, and finally what is the loss function.

DATA: The data in this problem is a univariate time series of size 7"
(Y1,Ya,...,Y7).

STATISTICAL MODEL AND PARAMETER SPACE: The statistical model is a
Gaussian AR(1):

Y, =oYi 1 +e, e~N00?, ¢ iid

We will assume that o2 is known, so that the only parameter of the model is

5.1) . This means that the parameter space is—in principle—
5.2) . We will introduce some notation. Let fs denote:
f(Yh s 7YT|¢)

and let f!; denote
f(}/ia s 7YT7 YT+.ZC|¢)

AcTIONS: We are interested in generating a forecast for Yy, ;. A forecast
is a function:
a:(Y1,...,Yr) =R

This is slightly different to what we have done in class as actions are not

scalars: they are functions.

12



Loss FuNcTioN: A loss function is a function of |5.3) and

| 5.3) | In this example, one possible loss to evaluate forecasts of

Y in k periods in the future is the following:

£(5.4) |[54) ) = Epl(Yree—a(Vi,.... Yr))’]. (5)

We can simplify the expression for the loss function. We have shown
that:

k
Yrik = 0"Yr + ok,
where 71 is some error term that is mean zero (even conditional on the

information available at time T') and whose distribution depends on ¢. Note

that we can write the loss as:

c(54) |54 ) = Epl(¥Yrex—*Yr+ 'Y —a(i,..., Y)Y
= Eplmrn + Y —a(W1,..., V7))

= Varg(nryr) + <5.5)]Ef¢

This means that if ¢ were known, we would like to forecast Y\ using

simply ¢*Y7.
BAYESIAN FORECASTING: To solve the forecasting problem, a Bayesian
decision maker postulates a prior on ¢. Let m(¢$) denote the prior and

m(p|Y1,...,Yr) denote the posterior. In class we have shown that the

Bayesian chooses the action a that minimizes posterior loss:

Er(gvi,....yr) [ L(a, 0)] = /¢£(CL3¢)7T(¢Y1,---,YT)61¢

Since the choice of action does not affect Varg(nri), minimizing the

13



posterior loss is equivalent to:

a

min/qufd) [56) ] w(o|Y1,...,Yr)do (6)

This is still a complicated problem, since a is a function. We can simplify
this problem by defining Y = (Y7,...,Yr) and noting that:

Ep (6 — a(Y))?)] = / (Y — a(Y))F(Y]6)dY

Y

which implies that posterior loss can be written as:

/¢ (/YW’YT = a(Y)PF(Y|6)dY ) m(o|Yi, .. Yr)do. )

Changing the order of integration we get:

/Y (A(WQ@ —a(Y)2 (| Vi, . .,YT)d¢)f(Y|¢)dY'

This means that the Bayesian forecast can be defined as the function a(Y)

such that for each realization Y it minimizes:

/¢ (5.7) ) dp = Ex[(¢FYp—a(Y))?|Y1,.... V7]

But then, we can proceed as in class and do:

14



Ex[(¢*Vr — a(Y))*V1,...,Yr] = E[(¢"Vr — E[¢"Y7 Y] + E[¢"Y7[Y] — a(Y))?[Y]

Ex[(
E+((¢"Yr — E[¢"Y7[Y])? Y]
Ex(

)

+ Eq[(El¢*Yr[Y] - a(Y))? Y]
+ | 8 |
= Eq[(¢"Yr — E[¢"Y7|Y])’| Y]
+ E((Bl¢"Y7|Y] —a(Y))’| Y]

And therefore, the Bayesian forecast for a prior 7 is:

a*(Yi,...,YT) =

15



