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1 Contact Information

Teaching Website: www.nathanieldmark.weebly.com

Email: ndm2125@columbia.edu

2 Topic One: Structure and Purpose

Four 1.5 Hour recitations: August 22nd, 24th, 29th, and 31st, plus today, which will be
shorter.

In addition, I will likely have a (total of 2 hours) recitation on the 1st and/or the
4th as review sessions for the exam and/or clarification of further topics, depending on
demand. Please fill out the short survey on my teaching website if you have a preference.

Recitations are for you. I am your research assistant. For each recitation, there will
be a survey where you can ask for clarifications on topics, proofs etc., and I will do my
best to answer them. This will be the main goal of the recitations, but if not enough
questions are asked, I will move on to prepared material. What this planned material
also depends on your preferences. Please take the time to fill out the survey.

However, note that I will be focusing my recitation for those who struggle with
mathematics, not those who know they want to go into micro theory and already have
a masters in mathematics.

3 Topic Two: Mathematical Proofs - an introduction

3.1 Terminology and structure

There are four parts to a mathematical proof :
1) Axioms/Assumptions – facts that are assumed to be true.
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2) Theorems – Previously proven facts
3) Facts derived by rules of inference using Axioms and Theorems
lemma – a theorem that is proven en route to proving a concluding theorem.
4) Concluding Theorem – the proven statement
Propositions – less important concluding theorems.
Optional: Corollaries – facts that are implied by the concluding theorem.

It is often useful to think at each statement: which part of the proof is this statement?
The basic structure is:

Premises (Axioms and Theorems), then Inference, then Concluding Theorem.
Logic terminology/symbolism:

• ¬ - not

• ∧ - and

• ∨ -or

3.2 Proving Implications

Many of the statements we want to prove take the form ‘’If P is true, then Q is true.”

Terminology:
1) The following are equivalent:

• If P is true, then Q is true

• P implies Q

• P ⇒ Q

• P is a sufficient condition for Q and Q is a necessary condition for P.

• not(Q)⇒ not(P)

There are four major types of implication proofs:
1)Proof By Construction (Direct Proofs)
2)Proof By Contradiction (Indirect Proofs)
3)Proof By Induction
4)Proof By Contrapositive

We will go over the structure of each.

PROOF BY CONSTRUCTION:
- This is called a direct proof
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Want to show: P ⇒ Q
Premises
Assume P is true.
Inference
Use rules of inference to show that P ⇒ Q

PROOF BY CONTRADICTION:
- This is called an indirect proof
Want to show: P ⇒ Q
Premises
Assume P is true. Assume not(Q) is true.
Inference
Use rules of inference to show that P and not(Q) is contradictory. I.e. show 6=[P and
not(Q)].

PROOF BY INDUCTION:
First, Q must take the following form: Q = {Q(x)∀x ∈ X} where X is an ordered set
(xn is the nth element of X).
Premises
Assume P is true.
Inference
Prove the basis: P ⇒ Q(x1)
Prove the induction step: [P ⇒ Q(xn)]⇒ [P ⇒ Q(xn+1)]
[basis ∧ induction step]⇒ [P ⇒ Q]

PROOF BY CONTRAPOSITIVE:
Want to show: P ⇒ Q
Premises
Assume not(Q) is true.
Inference
Use rules of inference to show that not(Q)⇒ not(P )
[not(Q)⇒ not(P )]⇒ [P ⇒ Q]

What if we want to prove that P iff Q? Simply prove using one of the techniques
above that P ⇒ Q and Q ⇒ P.

Note that P is sometimes implicit. For example, if we want to prove that 2x/2=x,
what we are really saying is “If x is a member of the real numbers under Euclidean
distance then 2x/2=x.” P, in short, is anything in your premise.

3.3 Proving Statements with Quantifiers

Quantifiers take three basic forms: 1) Universal quantifiers; For any/For all; ∀, 2) Exis-
tential quantifiers; There exists; ∃, 3) Unique existential quantifiers; There exists exactly
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one; ∃!. The following outlines the general structure for these types of proofs.

UNIVERSAL QUANTIFIERS
We want to show that P ⇒ ∀x ∈ X,Q(x).
Basic structure:
Take any arbitrary x ∈ X.
Show that P ⇒ Q(x) using one of the strategies above.

NEGATION OF UNIVERSAL QUANTIFIERS
We want to show that P ⇒ ¬[∀x ∈ X,Q(x)].
Basic structure:
Find an x ∈ X such that (assuming P), ¬Q(x).

EXISTENTIAL QUANTIFIERS
We want to show that P ⇒ ∃x ∈ X|Q(x).
We almost always do this by proof in construction and it often takes trial and error.
That is, we search for an x in X such that we can prove that P ⇒ Q(x) by one of the
methods above.

UNIQUE EXISTENTIAL QUANTIFIERS
We want to show that P ⇒ ∃!x ∈ X|Q(x).
Step One: Prove that P ⇒ ∃x ∈ X|Q(x).
Step Two: Prove that this x is unique. We do this by assuming that there are two mem-
bers of X that satisfy Q(x), then show that these two members are equivalent. That is,
Take x1, x2 ∈ X|P ⇒ Q(x1) ∧Q(x2)
Prove [P ⇒ Q(x1) ∧Q(x2)]⇒ x1 = x2

Final note of use:

¬[∃x ∈ X|Q(x)] ⇐⇒ [∀x ∈ X,¬Q(x)]

¬[∀x ∈ X,Q(x)] ⇐⇒ [∃x ∈ X|¬Q(x)]

4 Table On Page 14 Proofs

In (R, d2):

[0,+∞):
Closed:

[0,+∞) contains all its limit points

⇐⇒ [[0,+∞)c contains no limit points]
So, WTS x ∈ [0,+∞)c ⇒ ∃Br(x) ∩ [0,+∞)
Take x ∈ [0,+∞)c = (−∞, 0)
Define r = abs(x2 )
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Br(x) ∈ (−∞, 0)
Not Open:
Not[All members of [0,+∞) are interior points] iff [There exists a member of [0,+∞)
that is not an interior point]
This member is the value 0. For all r > 0,− r

2 ∈ Br(0)and− r
2 6∈ [0,+∞).

(0,+∞):
Not Closed:

not[(0,+∞) contains all its limit points

iff [there exists a limit point that is not in(0,+∞)]
This example is 0. 0 is a limit point, as for all r > 0, r2 ∈ (0,+∞). Yet, r

2 6∈ (0,+∞)
Open:
WTS: All members of (0,+∞) are interior points.
Take an arbitrary x ∈ (0,+∞). Define r = x

2 . Br(x) ⊂ (0,+∞)
{ 1n |n ∈ N}:

Not Closed:
{ 1n |n ∈ N} contains all its limit points

iff [there exists a limit point that is not in{ 1n |n ∈ N}]
This example is 0. 0 is a limit point as for all r¿0, there exists an n such that (1/n) ∈
Br(0). Yet, 0 6∈ { 1n |n ∈ N}
Not Open:
Not[All members of { 1n |n ∈ N} are interior points] iff [There exists a member of
{ 1n |n ∈ N} that is not an interior point]
Indeed, all members are not interior points. Take 1. For all .5 > r > 0, (1 + r

2) ∈ Br(1)
and (1 + r

2) 6∈ [0,+∞).

In (R+, d2):
[0,+∞):
Open:
[All members of [0,+∞) are interior points]
Take 0. For all r, Br(0) = [0, r) ⊂ [0,+∞), so 0 is an interior point.
Take an arbitrary x ∈ (0,+∞). Define r = x

2 . Br(x) ⊂ (0,+∞)
⇒ 0 ∪ (0,+∞) = [0,+∞) are interior points.
Closed:
[[0,+∞) contains all its limit points]iff [[0,+∞)c contains no limit points]
So WTS no limit points are in [0,+∞)c

[0,+∞)c = ∅, which of course, includes no limit points.

(0,+∞) and { 1n |n ∈ N}:
Same As Before.

In (R++, d2):
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(0,+∞):
Closed:

(0,+∞) contains all its limit points

iff [(0,+∞)c contains no limit points]
So WTS no limit points are in (0,+∞)c

(0,+∞)c = ∅, which of course, includes no limit points.
Open:
WTS: All members of (0,+∞) are interior points.
Take an arbitrary x ∈ (0,+∞). Define r = x

2 . Br(x) ⊂ (0,+∞)

{ 1n |n ∈ N}:
Not Open:
Not[All members of { 1n |n ∈ N} are interior points] iff [There exists a member of { 1n |n ∈
N} that is not an interior point]
Indeed, all members are not interior points. Take 1. For all .5 > r > 0, (1 + r

2) ∈ Br(1)
and (1 + r

2) 6∈ [0,+∞).
Closed:
{ 1n |n ∈ N} contains all its limit points

iff [{ 1n |n ∈ N}
c contains no limit points]

So WTS no limit points are in { 1n |n ∈ N}
c

Take x ∈ R++ ∩ { 1n |n ∈ N}
Define r = minn∈N {| 1n − x|}
r¿0, as for all x¿0, we can find two members of N , n1 and n2 such that x ∈ ( 1

n1
, 1
n2

).
Br(x) ⊂ N}c ⇒ x is not a limit point.
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