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1 Contact Information

Teaching Website: www.nathanieldmark.weebly.com

Email: ndm2125Q@columbia.edu

2 Topic One: Structure and Purpose

Four 1.5 Hour recitations: August 22nd, 24th, 29th, and 31st, plus today, which will be
shorter.

In addition, I will likely have a (total of 2 hours) recitation on the 1st and/or the
4th as review sessions for the exam and/or clarification of further topics, depending on
demand. Please fill out the short survey on my teaching website if you have a preference.

Recitations are for you. I am your research assistant. For each recitation, there will
be a survey where you can ask for clarifications on topics, proofs etc., and I will do my
best to answer them. This will be the main goal of the recitations, but if not enough
questions are asked, I will move on to prepared material. What this planned material
also depends on your preferences. Please take the time to fill out the survey.

However, note that I will be focusing my recitation for those who struggle with
mathematics, not those who know they want to go into micro theory and already have
a masters in mathematics.

3 Topic Two: Mathematical Proofs - an introduction

3.1 Terminology and structure

There are four parts to a mathematical proof :
1) Azioms/Assumptions — facts that are assumed to be true.



2) Theorems — Previously proven facts

3) Facts derived by rules of inference using Axioms and Theorems

lemma — a theorem that is proven en route to proving a concluding theorem.
4) Concluding Theorem — the proven statement

Propositions — less important concluding theorems.

Optional: Corollaries — facts that are implied by the concluding theorem.

It is often useful to think at each statement: which part of the proof is this statement?
The basic structure is:

Premises (Axioms and Theorems), then Inference, then Concluding Theorem.
Logic terminology /symbolism:

e — - not
e A -and
e V -or

3.2 Proving Implications

)

Many of the statements we want to prove take the form “If P is true, then Q is true.’

Terminology:
1) The following are equivalent:

If P is true, then Q is true

P implies Q

P=qQ
e P is a sufficient condition for Q and Q is a necessary condition for P.
e 1n0t(Q)= not(P)

There are four major types of implication proofs:
1)Proof By Construction (Direct Proofs)
2)Proof By Contradiction (Indirect Proofs)
3)Proof By Induction
4)Proof By Contrapositive

We will go over the structure of each.

PROOF BY CONSTRUCTION:
- This is called a direct proof



Want to show: P = @

Premises

Assume P is true.

Inference

Use rules of inference to show that P = @

PROOF BY CONTRADICTION:
- This is called an indirect proof
Want to show: P = @Q
Premises
Assume P is true. Assume not(Q) is true.
Inference
Use rules of inference to show that P and not(Q) is contradictory. I.e. show #[P and

not(Q)]-

PROOF BY INDUCTION:
First, Q must take the following form: @ = {Q(z)Vz € X} where X is an ordered set
(2, is the n element of X).
Premises
Assume P is true.
Inference
Prove the basis: P = Q(x1)
Prove the induction step: [P = Q(z,)] = [P = Q(xn41)]
[basis N\ induction step] = [P = Q)]

PROOF BY CONTRAPOSITIVE:
Want to show: P = @
Premises
Assume not(Q) is true.
Inference
Use rules of inference to show that not(Q) = not(P)
[not(Q) = not(P)] = [P = Q)]

What if we want to prove that P iff Q7 Simply prove using one of the techniques
above that P = Q and Q = P.

Note that P is sometimes implicit. For example, if we want to prove that 2x/2=x,
what we are really saying is “If x is a member of the real numbers under Euclidean
distance then 2x/2=x.” P, in short, is anything in your premise.

3.3 Proving Statements with Quantifiers

Quantifiers take three basic forms: 1) Universal quantifiers; For any/For all; V, 2) Exis-
tential quantifiers; There exists; 3, 3) Unique existential quantifiers; There exists exactly



one; d!. The following outlines the general structure for these types of proofs.

UNIVERSAL QUANTIFIERS
We want to show that P = Vz € X, Q(x).
Basic structure:
Take any arbitrary z € X.
Show that P = Q(z) using one of the strategies above.

NEGATION OF UNIVERSAL QUANTIFIERS
We want to show that P = —[Vx € X, Q(x)].
Basic structure:
Find an x € X such that (assuming P), =Q(z).

EXISTENTIAL QUANTIFIERS
We want to show that P = Jz € X|Q(z).
We almost always do this by proof in construction and it often takes trial and error.
That is, we search for an x in X such that we can prove that P = Q(x) by one of the
methods above.

UNIQUE EXISTENTIAL QUANTIFIERS
We want to show that P = Jlz € X|Q(z).
Step One: Prove that P = Jz € X|Q(z).
Step T'wo: Prove that this x is unique. We do this by assuming that there are two mem-
bers of X that satisfy Q(x), then show that these two members are equivalent. That is,
Take z1,22 € X|P = Q(z1) A Q(x2)
Prove [P = Q(:L’1) VAN Q(:L‘Q)] = T1 = X9

Final note of use:
B € X|Q(@)] <= [¥a € X,~Q()]

-Vr € X,Q(z)] < [Fr € X|-Q(x)]

4 Table On Page 14 Proofs
In (R, d2):

[0, 4+00):

Closed: . o )
TO, +00) contains all its limit points

<= [[0,+00)° contains no limit points]
So, WTS z € [0,400)¢ = 3B, (x) N [0, +0)
Take z € [0, +00)¢ = (—00,0)

Define r = abs(%)



B, (z) € (—0,0)

Not Open:

Not[All members of [0,4+00) are interior points] iff [There exists a member of [0, 4+00)
that is not an interior point]

This member is the value 0. For all » > 0, —% € B,.(0)and — § ¢ [0, 4+00).

(0, 4+00):
Not Closed: . . .
not?(gO, +00) contains all its limit points
iff [there exists a limit point that is not in(0, +00)]
This example is 0. 0 is a limit point, as for all » > 0, € (0, +00). Yet, § & (0, +00)
Open:
WTS: All members of (0, +00) are interior points.
Take an arbitrary x € (0, +00). Define r = 5. B,.(z) C (0, +00)
{tine N}
Not Closed: ) o )
{sIn € N'} contains all its limit points
iff [there exists a limit point that is not in{2|n € N'}]
This example is 0. 0 is a limit point as for all r;0, there exists an n such that (1/n) €
B,(0). Yet, 0 ¢ {Zjn e N}
Not Open:
Not[All members of {1ln € N} are interior points] iff [There exists a member of
{L|n € '} that is not an interior point]
Indeed, all members are not interior points. Take 1. For all .5 >r > 0,(1+ §) € B,(1)
and (14 3) & [0, +00).

In (R4, d2):
[0, +00):
Open:
[All members of [0, +00) are interior points]
Take 0. For all r, B, (0) = [0,7) C [0,400), so 0 is an interior point.
Take an arbitrary = € (0,+00). Define r = §. B,.(x) C (0, +o0)
= 0U (0,400) = [0, +00) are interior points.
Closed:
[[0, +00) contains all its limit points]if f[[0, +00)¢ contains no limit points]
So WTS no limit points are in [0, +00)¢
[0,400)¢ = ), which of course, includes no limit points.

(0,400) and {1|n € N'}:
Same As Before.

In (R-‘r-i-v d2):



(0, 400):

Closed: i o )
(0, +00) contains all its limit points

iff [(0,+00)¢ contains no limit points]

So WTS no limit points are in (0, +00)¢

(0,400)¢ = (), which of course, includes no limit points.

Open:

WTS: All members of (0, +00) are interior points.

Take an arbitrary = € (0,+00). Define r = §. B,.(x) C (0, +oc0)

{tine N}
Not Open:
Not[All members of {1|n € '} are interior points] iff [There exists a member of {2|n €
N} that is not an interior point]
Indeed, all members are not interior points. Take 1. For all .5 > 7> 0,(1+ 3) € B,(1)
and (14 %) & [0, 4+00).
Closed:
{1|n € N} contains all its limit points
iff [{1|n € N} contains no limit points]
So WTS no limit points are in {1|n € N}
Take x € Ryy N{i|ln e N'}
Define r = minnen{|2 — [}
r;0, as for all x;0, we can find two members of N, ny and ny such that x € (n%, L),
B, (xz) C N'}¢ = x is not a limit point.



