Math Camp Recitation One

Nathaniel Mark

August 17, 2017

1 Contact Information

Teaching Website: www.nathanieldmark.weebly.com

Email: ndm2125@columbia.edu

2 Topic One: Structure and Purpose

Four 1.5 Hour recitations: August 22nd, 24th, 29th, and 31st, plus today, which will be shorter.

In addition, I will likely have a (total of 2 hours) recitation on the 1st and/or the 4th as review sessions for the exam and/or clarification of further topics, depending on demand. Please fill out the short survey on my teaching website if you have a preference.

Recitations are for *you*. I am your research assistant. For each recitation, there will be a survey where you can ask for clarifications on topics, proofs etc., and I will do my best to answer them. This will be the main goal of the recitations, but if not enough questions are asked, I will move on to prepared material. What this planned material also depends on your preferences. Please take the time to fill out the survey.

However, note that I will be focusing my recitation for those who struggle with mathematics, not those who know they want to go into micro theory and already have a masters in mathematics.

3 Topic Two: Mathematical Proofs - an introduction

3.1 Terminology and structure

There are four parts to a mathematical proof : 1) Axioms/Assumptions – facts that are assumed to be true. 2) Theorems – Previously proven facts

3) Facts derived by rules of inference using Axioms and Theorems

lemma – a theorem that is proven en route to proving a concluding theorem.

4) Concluding Theorem – the proven statement

Propositions – less important concluding theorems.

Optional: Corollaries – facts that are implied by the concluding theorem.

It is often useful to think at each statement: which part of the proof is this statement? The basic structure is:

Premises (Axioms and Theorems), then Inference, then Concluding Theorem. Logic terminology/symbolism:

- ¬ not
- \wedge and
- \vee -or

3.2 Proving Implications

Many of the statements we want to prove take the form "If P is true, then Q is true."

Terminology:

1) The following are equivalent:

- If P is true, then Q is true
- P implies Q
- $P \Rightarrow Q$
- P is a sufficient condition for Q and Q is a necessary condition for P.
- $not(Q) \Rightarrow not(P)$

There are four major types of implication proofs:

- 1) Proof By Construction (Direct Proofs)
- 2) Proof By Contradiction (*Indirect Proofs*)
- 3)Proof By Induction
- 4) Proof By Contrapositive

We will go over the structure of each.

PROOF BY CONSTRUCTION: - This is called a *direct proof*

Want to show: $P \Rightarrow Q$ Premises Assume P is true. Inference Use rules of inference to show that $P \Rightarrow Q$

PROOF BY CONTRADICTION:

- This is called an *indirect proof* Want to show: $P \Rightarrow Q$ *Premises* Assume P is true. Assume not(Q) is true. *Inference* Use rules of inference to show that P and not(Q) is contradictory. I.e. show \neq [P and not(Q)].

PROOF BY INDUCTION:

First, Q must take the following form: $Q = \{Q(x) \forall x \in X\}$ where X is an ordered set $(x_n \text{ is the } n^{th} \text{ element of X}).$ Premises Assume P is true. Inference Prove the basis: $P \Rightarrow Q(x_1)$ Prove the induction step: $[P \Rightarrow Q(x_n)] \Rightarrow [P \Rightarrow Q(x_{n+1})]$ $[basis \land induction step] \Rightarrow [P \Rightarrow Q]$

PROOF BY CONTRAPOSITIVE:

Want to show: $P \Rightarrow Q$ *Premises* Assume not(Q) is true. *Inference* Use rules of inference to show that $not(Q) \Rightarrow not(P)$ $[not(Q) \Rightarrow not(P)] \Rightarrow [P \Rightarrow Q]$

What if we want to prove that P iff Q? Simply prove using one of the techniques above that $P \Rightarrow Q$ and $Q \Rightarrow P$.

Note that P is sometimes implicit. For example, if we want to prove that 2x/2=x, what we are really saying is "If x is a member of the real numbers under Euclidean distance then 2x/2=x." P, in short, is anything in your premise.

3.3 Proving Statements with Quantifiers

Quantifiers take three basic forms: 1) Universal quantifiers; For any/For all; \forall , 2) Existential quantifiers; There exists; \exists , 3) Unique existential quantifiers; There exists exactly

one; \exists !. The following outlines the general structure for these types of proofs.

UNIVERSAL QUANTIFIERS We want to show that $P \Rightarrow \forall x \in X, Q(x)$. Basic structure: Take any arbitrary $x \in X$. Show that $P \Rightarrow Q(x)$ using one of the strategies above.

NEGATION OF UNIVERSAL QUANTIFIERS We want to show that $P \Rightarrow \neg [\forall x \in X, Q(x)]$. Basic structure: Find an $x \in X$ such that (assuming P), $\neg Q(x)$.

EXISTENTIAL QUANTIFIERS

We want to show that $P \Rightarrow \exists x \in X | Q(x)$.

We almost always do this by proof in construction and it often takes trial and error. That is, we search for an x in X such that we can prove that $P \Rightarrow Q(x)$ by one of the methods above.

UNIQUE EXISTENTIAL QUANTIFIERS

We want to show that $P \Rightarrow \exists ! x \in X | Q(x)$. Step One: Prove that $P \Rightarrow \exists x \in X | Q(x)$. Step Two: Prove that this x is unique. We do this by assuming that there are two members of X that satisfy Q(x), then show that these two members are equivalent. That is, Take $x_1, x_2 \in X | P \Rightarrow Q(x_1) \land Q(x_2)$ Prove $[P \Rightarrow Q(x_1) \land Q(x_2)] \Rightarrow x_1 = x_2$

Final note of use:

$$\neg [\exists x \in X | Q(x)] \iff [\forall x \in X, \neg Q(x)]$$
$$\neg [\forall x \in X, Q(x)] \iff [\exists x \in X | \neg Q(x)]$$

4 Table On Page 14 Proofs

In (\mathbb{R}, d_2) :

 $[0, +\infty):$ Closed: $[0, +\infty) \text{ contains all its limit points}$ $\iff [[0, +\infty)^c \text{ contains no limit points}]$ So, WTS $x \in [0, +\infty)^c \Rightarrow \exists B_r(x) \cap [0, +\infty)$ Take $x \in [0, +\infty)^c = (-\infty, 0)$ Define $r = abs(\frac{x}{2})$

 $B_r(x) \in (-\infty, 0)$ Not Open: Not[All members of $[0, +\infty)$ are interior points] iff [There exists a member of $[0, +\infty)$ that is not an interior point] This member is the value 0. For all $r > 0, -\frac{r}{2} \in B_r(0)$ and $-\frac{r}{2} \notin [0, +\infty)$. $(0, +\infty)$: Not Closed: $not[(0, +\infty)$ contains all its limit points iff [there exists a limit point that is not $in(0, +\infty)$] This example is 0. 0 is a limit point, as for all $r > 0, \frac{r}{2} \in (0, +\infty)$. Yet, $\frac{r}{2} \notin (0, +\infty)$ Open: WTS: All members of $(0, +\infty)$ are interior points. Take an arbitrary $x \in (0, +\infty)$. Define $r = \frac{x}{2}$. $B_r(x) \subset (0, +\infty)$ $\{ \frac{1}{n} | n \in \mathcal{N} \}:$ Not Closed: $\{ \frac{1}{n} | n \in \mathcal{N} \}$ contains all its limit points iff [there exists a limit point that is not $\inf\{\frac{1}{n}|n \in \mathcal{N}\}$] This example is 0. 0 is a limit point as for all r;0, there exists an n such that $(1/n) \in$ $B_r(0)$. Yet, $0 \notin \{\frac{1}{n} | n \in \mathcal{N}\}$ Not Open: Not[All members of $\{\frac{1}{n} | n \in \mathcal{N}\}$ are interior points] iff [There exists a member of $\{\frac{1}{n} | n \in \mathcal{N}\}$ that is not an interior point] Indeed, all members are not interior points. Take 1. For all $.5 > r > 0, (1 + \frac{r}{2}) \in B_r(1)$ and $(1 + \frac{r}{2}) \notin [0, +\infty)$. In (\mathcal{R}_+, d_2) : $[0, +\infty)$: Open: [All members of $[0, +\infty)$ are interior points] Take 0. For all r, $B_r(0) = [0, r) \subset [0, +\infty)$, so 0 is an interior point. Take an arbitrary $x \in (0, +\infty)$. Define $r = \frac{x}{2}$. $B_r(x) \subset (0, +\infty)$ $\Rightarrow 0 \cup (0, +\infty) = [0, +\infty)$ are interior points. Closed: $[[0, +\infty)$ contains all its limit points] $iff[[0, +\infty)^c$ contains no limit points] So WTS no limit points are in $[0, +\infty)^c$

 $[0, +\infty)^c = \emptyset$, which of course, includes no limit points.

 $(0, +\infty)$ and $\{\frac{1}{n} | n \in \mathcal{N}\}$: Same As Before.

In (\mathcal{R}_{++}, d_2) :

 $(0, +\infty)$: Closed: $(0, +\infty)$ contains all its limit points iff $[(0, +\infty)^c$ contains no limit points] So WTS no limit points are in $(0, +\infty)^c$ $(0, +\infty)^c = \emptyset$, which of course, includes no limit points. Open: WTS: All members of $(0, +\infty)$ are interior points. Take an arbitrary $x \in (0, +\infty)$. Define $r = \frac{x}{2}$. $B_r(x) \subset (0, +\infty)$

 $\{\frac{1}{n}|n \in \mathcal{N}\}$: Not Open:

Not[All members of $\{\frac{1}{n}|n \in \mathcal{N}\}\$ are interior points] iff [There exists a member of $\{\frac{1}{n}|n \in \mathcal{N}\}\$ \mathcal{N} that is not an interior point]

Indeed, all members are not interior points. Take 1. For all $.5 > r > 0, (1 + \frac{r}{2}) \in B_r(1)$ and $(1 + \frac{r}{2}) \notin [0, +\infty)$.

Closed: $\{\frac{1}{n} | n \in \mathcal{N}\}$ contains all its limit points

iff $[\{\frac{1}{n}|n\in\mathcal{N}\}^c$ contains no limit points] So WTS no limit points are in $\{\frac{1}{n} | n \in \mathcal{N}\}^c$

Take $x \in \mathcal{R}_{++} \cap \{\frac{1}{n} | n \in \mathcal{N}\}$ Define $r = \min_{n \in \mathcal{N}} \{|\frac{1}{n} - x|\}$ r;0, as for all x;0, we can find two members of \mathcal{N}, n_1 and n_2 such that $x \in (\frac{1}{n_1}, \frac{1}{n_2})$. $B_r(x) \subset \mathcal{N}\}^c \Rightarrow x \text{ is not a limit point.}$